p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.61D4, C23.7Q16, C23.16SD16, C22⋊Q8⋊8C4, (C22×Q8)⋊5C4, C4.14(C23⋊C4), C23.510(C2×D4), (C22×C4).221D4, C22.10(C2×Q16), C23.31D4⋊2C2, C22.11(C2×SD16), C23.7Q8.4C2, C22⋊C8.168C22, (C22×C4).642C23, (C23×C4).214C22, C22⋊Q8.147C22, C23.176(C22⋊C4), C22.21(Q8⋊C4), C2.C42.9C22, C2.25(C42⋊C22), (C2×C4⋊C4)⋊12C4, C4⋊C4.20(C2×C4), C2.23(C2×C23⋊C4), (C2×Q8).15(C2×C4), (C2×C22⋊Q8).5C2, (C2×C4).1166(C2×D4), (C2×C22⋊C8).11C2, C2.10(C2×Q8⋊C4), (C2×C4).132(C22×C4), (C22×C4).205(C2×C4), (C2×C4).242(C22⋊C4), C22.196(C2×C22⋊C4), SmallGroup(128,252)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.61D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=d, f2=b, ab=ba, ac=ca, ad=da, ae=ea, faf-1=acd, bc=cb, bd=db, ebe-1=bcd, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=bcde3 >
Subgroups: 324 in 144 conjugacy classes, 54 normal (28 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, Q8, C23, C23, C23, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×Q8, C2×Q8, C24, C2.C42, C22⋊C8, C22⋊C8, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22⋊Q8, C22⋊Q8, C22×C8, C23×C4, C22×Q8, C23.31D4, C23.7Q8, C2×C22⋊C8, C2×C22⋊Q8, C24.61D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, SD16, Q16, C22×C4, C2×D4, C23⋊C4, Q8⋊C4, C2×C22⋊C4, C2×SD16, C2×Q16, C2×C23⋊C4, C2×Q8⋊C4, C42⋊C22, C24.61D4
(1 13)(2 14)(3 15)(4 16)(5 9)(6 10)(7 11)(8 12)(17 32)(18 25)(19 26)(20 27)(21 28)(22 29)(23 30)(24 31)
(2 31)(4 25)(6 27)(8 29)(10 20)(12 22)(14 24)(16 18)
(1 26)(2 27)(3 28)(4 29)(5 30)(6 31)(7 32)(8 25)(9 23)(10 24)(11 17)(12 18)(13 19)(14 20)(15 21)(16 22)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 17)(2 20 31 10)(3 13)(4 16 25 18)(5 21)(6 24 27 14)(7 9)(8 12 29 22)(11 26)(15 30)(19 28)(23 32)
G:=sub<Sym(32)| (1,13)(2,14)(3,15)(4,16)(5,9)(6,10)(7,11)(8,12)(17,32)(18,25)(19,26)(20,27)(21,28)(22,29)(23,30)(24,31), (2,31)(4,25)(6,27)(8,29)(10,20)(12,22)(14,24)(16,18), (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,25)(9,23)(10,24)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,17)(2,20,31,10)(3,13)(4,16,25,18)(5,21)(6,24,27,14)(7,9)(8,12,29,22)(11,26)(15,30)(19,28)(23,32)>;
G:=Group( (1,13)(2,14)(3,15)(4,16)(5,9)(6,10)(7,11)(8,12)(17,32)(18,25)(19,26)(20,27)(21,28)(22,29)(23,30)(24,31), (2,31)(4,25)(6,27)(8,29)(10,20)(12,22)(14,24)(16,18), (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,25)(9,23)(10,24)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,17)(2,20,31,10)(3,13)(4,16,25,18)(5,21)(6,24,27,14)(7,9)(8,12,29,22)(11,26)(15,30)(19,28)(23,32) );
G=PermutationGroup([[(1,13),(2,14),(3,15),(4,16),(5,9),(6,10),(7,11),(8,12),(17,32),(18,25),(19,26),(20,27),(21,28),(22,29),(23,30),(24,31)], [(2,31),(4,25),(6,27),(8,29),(10,20),(12,22),(14,24),(16,18)], [(1,26),(2,27),(3,28),(4,29),(5,30),(6,31),(7,32),(8,25),(9,23),(10,24),(11,17),(12,18),(13,19),(14,20),(15,21),(16,22)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,17),(2,20,31,10),(3,13),(4,16,25,18),(5,21),(6,24,27,14),(7,9),(8,12,29,22),(11,26),(15,30),(19,28),(23,32)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | ··· | 4N | 8A | ··· | 8H |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | - | + | |||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | D4 | D4 | SD16 | Q16 | C23⋊C4 | C42⋊C22 |
kernel | C24.61D4 | C23.31D4 | C23.7Q8 | C2×C22⋊C8 | C2×C22⋊Q8 | C2×C4⋊C4 | C22⋊Q8 | C22×Q8 | C22×C4 | C24 | C23 | C23 | C4 | C2 |
# reps | 1 | 4 | 1 | 1 | 1 | 2 | 4 | 2 | 3 | 1 | 4 | 4 | 2 | 2 |
Matrix representation of C24.61D4 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 13 |
0 | 0 | 0 | 0 | 4 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 15 | 0 | 16 | 0 |
0 | 0 | 0 | 2 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
3 | 14 | 0 | 0 | 0 | 0 |
3 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 0 | 9 |
0 | 0 | 9 | 0 | 9 | 0 |
0 | 0 | 0 | 1 | 0 | 8 |
0 | 0 | 1 | 0 | 9 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 13 |
0 | 0 | 14 | 0 | 13 | 0 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,13,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,13,0],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,15,0,0,0,0,1,0,2,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[3,3,0,0,0,0,14,3,0,0,0,0,0,0,0,9,0,1,0,0,8,0,1,0,0,0,0,9,0,9,0,0,9,0,8,0],[0,4,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,14,0,0,1,0,3,0,0,0,0,0,0,13,0,0,0,0,13,0] >;
C24.61D4 in GAP, Magma, Sage, TeX
C_2^4._{61}D_4
% in TeX
G:=Group("C2^4.61D4");
// GroupNames label
G:=SmallGroup(128,252);
// by ID
G=gap.SmallGroup(128,252);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,232,1430,387,352,1123,1018,248,1971]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=d,f^2=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,f*a*f^-1=a*c*d,b*c=c*b,b*d=d*b,e*b*e^-1=b*c*d,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=b*c*d*e^3>;
// generators/relations